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l. INTRODUCTION

"Stochastioc Process" is a time dependent random ,
. Phenomenon desoribed by a rrobability distribution law. b

In general, physical phenomena can be classified into de= :“
terministic, random and hybrid processres. However, there

are few physical phenomena which are pure deterninistio

i

or pure random processes. Instead, most of ph101631 pheno-

mena are hybrid processes which are the gombination

deterministic and random processes,

Random walk 18 a kind of Markov chain which in turn
1s a particular type of stochastic process, The random
walk model was first used by Kar1<Pearaon7 in 1905 in a
8tudy of random motion of s particle in space., Since then, 1t
has been used by a grest number of investigators. The ran-

.

dom walk process, as described by Pearson, can very closely
reproduce the diffusion process. 1In his book. reller8 staten;c
"1r the individual steps of a random walk are made extrenoly
small and ocoure in rapid succession, then at the limlt '

the process will appear as a continuous motion. The point

of interest is that in passing to this limit the formulae

physioally aignifloant formulae of d 1ffuaion theory.....
This explain- partly vhy the random walk model, despite

ite orudengss, dqloriboo diffusion process reasonably well ".

N LRI

T G S T P



O : Random walk provides a solution to a continum equae=
tion. Smoluchowski® has applied lt to the solution of the
one-dimensional diffusion equation. Another example is

| ~ Knighting's’solution of the three-dimensiomsl turbuleit
diffusion from an instantaneous point source near the boun-; |

“ dary in a uniform veloclty field.

The random walk model can be employcd in solving

‘_ ' differential equations of the continum case by a method of
random sampling. Somepimes. the method of random sampling
i | ' | 18 more effective than the analytical or numerical method . |
} ‘j_, . The method of random sampling, which is called "Monte Oag;d"'

method, was first suggested by Pbrni4 for studying the nc;r'if35'°

l(_) ' Schrodinger equation. A typical example of the applloation
L of this method to fluid mechanics is the solution of the
laplace equation,

Random walk can also be used to simulate physical
processes. In a direct simulation the features of a pro- )
" cess are reproduced by imitating the behaviors of approp:iato. f°
discrete entities, such as particles. Thia_npproach has
Proved effective in the studies of the diffusion and decay
of nuclear partioloa§ Por simulating a spooifio problol.
the only roquircnont 1- to build a ditoroto nodol that givo-

-,..,;;5, .
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& proper representation of the behaviors of the particles.
The essential features which characterize the specific aspectl

of the process being investigzated should be reproduced,

Bugliarello and Jacksonl! applied the random walk
method to the molecular diffusion in convective flow fields, -
They showed thai the use of a random walk technique yields.
solution to problems of molecular diffusion in a convective €
flow field. They stated, "It has been shown for the laminer
flow that the random walk not only has the advantage of by=
rassing the analytical solution of the problem, but also

&llows for considerable insight into the physical process,

" Both of these properties render the method a tool of poten-

tially great usefulness in the treatment of tqrbulont diffu=-
8lon problems". Results of a random walk study of ture |
bulent diffusion agreed very well with those given by Taylor's
Statistical theory of turbulent diffusionl. Random walk

thus emerges as a good approach to the aolution of the
diffusion problen.

In this study, the transport of auspénded solid
Particles under the influence of secondary flow will be
studied in a three dimensional convective flow field in - .
a corner of a straight rectangular channel, The secondary
flow 18 a circulatory motion of the fluld around an axis '
parallel to the longitudinal axis of a channel, whuo the
prinary flow 1. s trunalation of tho fluxd ptrnllel to the

.'5‘3.-"‘




longitudinal axis of the channel. The combination of primary
and secondary flows results in a spiral motion. There are
two types of sgcondary flow: (1) secondary currents in
straight, noncircular channel, and (2) secondary currents

at bends of a channel. In the present study only the first

tyre of secondary flow, as shown in Pige 1=1, 18 considered.,

Secondau-y
currents

P I T T VT TITTrs TN ITVI IV, T—

Pig. 1l-1 Secondary Currents in a Corner of
a Straight Rectangular Ohannel

There are two principal objectives in this study.
The first objective 48 to bulld a stochastic model to re-
present the transport of suspended solid particles in cor= |
ners of stralght channels under the inflﬁenoé of secondary
flow. The second objective is to solve the developed dif-
fusion equation (equation (2-14) ) of suspended solid |
particles by Monte Carlo method. The solution will give
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II RANDOM WALK AND MONTE CARLO

As stated Previously, random walk can be used as
a model of a ﬁl;ysioal Phenomenon. Once the model 1s built |
the Monte Oarlo method can then be employed to simulate
the physioﬁl'syaton and find solutions to a problem through
the random sampling technique. Thus, a combination of rane .

dom walk and Monte Oarlo can provide solutioms to complex \

v
Y

problems in fluid mechanics which can not be solved by analys
tical methods,

A. Random Halk

Mathematically, a stochastic process can be written

as a collection of time-devendent random variables as {x(t);tGT}

that 18, a sequence of time dependent random variables,
4 discrete parameter stochastic process {X(k),t:o,l,2;-'} or a
continuous parameter stochastic process {x(t) ,t;o} is said to

be a Markov process if, for ki <tyQeee ¢y

PXCEREXn|X R X, X () 2Xna]
= P(X(Xn)& Xn| X (k) = Xna ) ‘ (2-1)
where P denotes a conditional probability funotion.
A real number X i1s said to be a possible value, or a statei.
of a stochastic process if there exists a time t in T such
that the probadbility P(X-h < X(x)<Xth] 1s positive
for an increment of i.’ h>0, The set of ?on;bh‘ Yaluu oY

'a stochastio




Process is called '  state space. A Markov process whose'
state space 1s discrete is called a Markov Chain.
A Markov process is described by a trans:.t'.;ioxg '
robabllity function, often denoted by P (X,te;E, r- ) or.

P ( E, IIX te ), which represents the conditional probability
that the state of a system will at time t belong to the ! '

{
discrete parameter Markov chain {x,} ’,hit suffices to state ;

+ o state X. In order to specify the prbbability law of ia
? for all times nzm 20, and states ) and k, -the probab;.llty

mass function » R

P, m-p(x..=ﬂ " (ams)

and the conditional probability mass function

a4

"Pi.& (MN)= P(Xa=R|Xm=}] ? o (2-4)

' The function ?Jk (my, n) is called the transition probability
function of the Markov chain. The probability law of a

' " Markov chain is determined by the functions in equations
(2-3) a (2-4), since for all integers q, and any q times -

N <nz<eee ng, and states k, ,k,,m,k%

' | P[X... .Iﬁ. ,"',xn'. - &}] = 'P-k.(no)‘P{‘ﬁ‘(“ﬁ‘"-)?ﬁ‘ﬁa(n..n;)

¢ 1
. : . : .
. ’ . : H
Je——
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A Markov chain 1is said to be homogeneous:in time or foAj

have stationary transition probability it PJk (m, n) de-‘ '

pends only on the difference n-m. Then, : |

P (mr= P (X =f<1x;=§j

for any 1nteger ; -@

0

t2Zo .....(2-6) is the n-step transition probability: funbtion

of the homogeneous Markov chain {X,} .

In words, ij (n)

is the conditlional probablility that a homogeneous Markov:

ohaln'now in state J will move,after n steps,to state k.

The one=step transition probability PJK (1) are usually

written simply Pjx, or

Py =P Dxen = [ =]

(2-7)

The transition probabilities of a Markov chain

{xn} with state space {o, 1, 2, ........:} are best exhlb%ted{

" in the form of a matrix:

(Polm,n)  Porlmn)

P(m,n)= Fo(mn) £, (m, n)

véo(nnn) A'é‘(hhn)

\

~-__

in wnich the elements of a transition

" P (m, n) satisfy the conditions

P (mm) 3o for aun ik

Z;’F’jkcm.n)=i for an 4

ers fa(mn)

.'.o ‘P,i(m;"\) PR

»

* e 0 'P!_& (m.n) L X AN ]

: ' . J !

prooability matrix

(2=-8) °

(2-9)




f
A fundamental relation satisfied by the transition
probability funection of a Markov chain { X} 1s the so-called
Chapman-Kolmogorov equat:.on- for any time n>u>m 20 andl
states J and k. o

g (mm) iﬁtﬁ;<h.u)ﬁ& (u,n).

5 n:Q l,o..o} :

' |
A random walk 1is a Markov chain {Xj '

which consists of integer state spaces, with the property

that if the system is in a given state.k then in a single
transition the system either remains .at k or moves to: one

of the states immediately adjacent to k. Por example% as

in the one-dimensional case it can be represented by,é

transition Probability matrix P as: f '

?
v £ 06 o o ...] ;
. Y ‘p o o e 00 .
p=|b W % -1t
- 0 % 2 A o ... ' -t
¢ ¢ B B .-
N y
where, :
' rﬁ*?ﬁ'i _ Lor 4 =0
%ﬁfrﬁfﬁzi :-or k=4,2,0°°
. ‘ | |
and » .

P (q) represents the probability that the particle moves in

positive. (negative) direction. o f

b o represents the probability that the particle: remain.
' at the same place.
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B. Random Walk Model of the 'I‘ranspoxjt of qupended Solid
Particles - !

]
!
) i
: .
[} .

'

! !
i

Let P (x,,x,,x,,t) “be the prqbabnity it

that a particle,which at %, starts from the origin ( q » 0, 0) ‘,

i
]
'
' [
i
l

arrives at the position (x,, x,,x, ) at t. P will be oalled
the piobability function of displacement. Let P (83) denote
the probability that a particle moves in the positive (ne--
gative) XJ -direction. Suppose in each step a par‘ciole |

travels a distanoce AXJ in the xJ ~direction and the time

interval between any two consecutive steps is <T.
(‘i, x&'xa*‘xa)
X _
» (x”x‘ x}) 4 /l‘lcxl'“fij'&)xi)

: ”
. . ‘/‘
X, 0-___\’,
a

~ * (X, XiFraxXy, X3)

X, +ox
X, 1%, %) * (X, %a, Xz=a%,)

Fig 2=1. Schematic Diagram of Random Walk Model
/

Then, by total probability theorem; ' L ‘

P (XX, %y, 8) = B[ PO - £ “T)+ 3 P OKrany £ - t)] (2-12)

i

where the index j refers to the coordinates which Varl.es.
For example, when Jz 2, P(xi-ax},-k-r.)s P(x.,x‘-ax,‘, x:,,-k-‘()
After rearranging, equation (2=12) can be réwritten in' the

form of difference equation:




M._\,__L § -—#——4—_3)('?*%)(“ [p(xw“'f-t)

+ P (% -ax -t) 2P( Xy, X, , %3,k - 'L')J/A,‘“z +}E (% ﬂmq
[P(x-uxrt =T)=P(x; i=4%, '-t)]/uxp ' | (2-13)

" In the limiting case, equation (2-13) becomes s differential
: eq‘uation of particles.

\ 3P  laciay
f-:,[laxj +(ax} Vt)axi] (2 ‘4).- :
where s
e _ ("P-)"'% )(AX})" — 6';' e pll s e A
CJ =5 2C = 3T = e Xj-Component of
the: dif"rusmn coefficient. ceees(2=15)

' in whlchc'? represents the mean square displacement of L
particles in the XJ direction. A

o€, = L8 ) Yo i
9x<}-v3’— T e = = A*c."{ - (2719

which is the mean displacement of particles in the xj-.
direction and 1is called the "drift soefficient".
. Equation (2-16) 1s shown by Tohenls.

R
In one dimensional case, equation (2-14) becomes
SO a diffusion equation

E%se—f% + (2 -v,)2P . €2-17)

' 3%

in the X, direction. . Further more, if pug, squation (2-14)




where €; 1s called diffusion coefficient in an one dimen-
sional flow., Equation (2-18) can be solved analytiocally "
to give | a o S
» I YAt S

P(X,4) = e ' ¢a=-igy !

. 46'7r . ‘

‘ o
In a steady uniform flow in the x =direction, P is

L The
independent of x and t. Then,equation (2-14) becomes

3 3 €. 3P : :
-€. 3P _¢ B3P _3_ 22D L V2B _9€; 3P v.\2P
CeXy T TR BXa ¥Xa T T eXa 9%y 39X, r '.) 3Xs
: | ! ’
=0 . (2 -20)

which is analogous to the equation of particle concentration 3

. TFC _¢, Fe _26:3C _2€ ac ’¢

3G 25Xy T Bxadka  axs 3%y | 2ok,

+ (VS *V?) QS')_‘__ =0

5vs (2-21)

&M
] |

the x, & x, ~-components of the diffusion
coefficient for the ﬁranspbrt; of solid
particlesi v _ ;

C = average conoentration of solid particles

_at.a point.;

ca
. ] )

settling velocity of the representative

particle unciér the influenoce of gi‘avit g o

o3
]

the X, and x,-components of the average se-
ocondary velocity at; a point, which can be
either positive or negative in thg flui.d.z
carrying solid partiocles. |

SRR



Above illustrations show that the transport of sus-
pended solid particles can de represented by a random walk
model. Since the equation (2-14) can mot be solved analy- .

tioilly. the Hbﬁtc Oarlo method seems to be the only possible

' means for use,

0. Monte Oarlo Method et T e
. e

Y
\

v .
The Monte Oarle methnd s one whi ‘applies the random same N

Pling teachnique in the treatment of @ither deterministic

or probabilistic problems. The random sampling includes:

(1) modeling the probability process to be sampled, (2) de-
ciding how to generate random variables from the given pro- /-
bability distribution in somé efficient vays and (3) applying -
variance reducing tochhiquos. that 1s, methods of inorcaling
the acouracy of the estimates obtained from the -ampllng

Progcess.

When differential equations can not be solved analy-
tically, the importance and value of & Monte Oarlo method -
become apparzent. Although equation (2-20) can ve solved
by a nunorioal method, such as the relaxation method, it

' requires boundary values which must he o tained froz %




w4

<:f“" , experiments. Furthermore, the relaxation method is not

suitadble for nnohlﬁn computation. , A o

T
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IIT STOCHASTIC MODEL OF THE TRANSPORT OF SOLID
PARTICLES. |

In this study the transport or motion of a solid
particle in a fluid is oonsidered to arise as a result of
the superposition of the following two independent phenomena°
(1) random walk of ‘the particle ltself at the presence of
the fluid turbulence, and (2) action of the gravity force

and the mean conveotive flow on the purti le which is con-

-8ldered to be a deterministic process. - In brief the stoche- -

astic model of thig study oconsists of random and determinis-
tio components. i
A, Randoﬁ Walk of a Particle

Bandom walk can be used to similate the normai ‘
diffusion process. The random process of this systen 1s j
governed by the uniform or rectangular distribution proba-
bility law, that 1s, the particle diffuse with an 1sotrop1c |
diffusion coeffioclient when the fluid is- macroscopically at
rest. The basio step of random walk process of a partiole
consists of a constant length A and a random direction.

Therefore, the positions of a particle that undergoes

Fis. 3-1. Disgram of Ramdom Waik of o Particle
P (Sﬁmuneal coordinate ‘&wmtn\) o
- J.ll- - » o ‘ o

N .
. — i w m o e, o




Ry =K + L]

(Kadiy = (%), + Ly, for imo, 4,2, 000 (3-1)

(X3)iw = (X9) ¢ Ly;
where B
L'!;‘. = { sine; cos ¢,
lah=imumsmﬂ
L.shg 1 oL QL

In whioh

S 1s assumed to be a constant group mean value defined

N -_-..—h';‘—);(-kgllgal);“ﬁﬁrgguki‘ .‘3’2)

- It will be used as length unit in measuring quantities ‘ '

of length dimension in order to preserve the generality
of the problen.

G and pare two independent random numbers thch are
governed by a certain probability distribution lawe.

They can be generated easily by a digital Sompuist,

[
Por an isotropic diffusion, they are governed by the ’. .

s




S

uniform (or reotangular) probability distribution law,

In other words, they vary uniformly from O to 360 (1, l.
0%es360), F<p<36d)

B. Mean Convective Flow
The convective diffusion process in a corner |

of a straight ohannel is the transport due to the gravlty 1:
force and primary and secondary flows. The suspended \
solid particles with densities greater then that of
water have a eettiiug velocity due to the gravity
force., The ﬁrimary flow is a translation of the fluid
in the lpngitﬁdinal direction of a channel. The secondary
flow 18 a ciroulatory motion of the fluid in the planoﬂ"
pefpendicular to the primsry flow.

~r Iiggett, Ohiu and Miaol3 used an ourvilinear

orthogonal coordinate system, as shown in Fig. 3=2 in

| deriving equations for secondéry velocities, o o e

4

% | |
ﬂ_\lmes of ‘Q: Congtant , or "
orthogomnal *r'aJeci-orlcs of

isovels of prlma.ry flow. -

Isovels oF prlmry FIow
or g = constant, - -

!
£ [bﬁi,';m oF o chamnel
ng. 3°2 Ooordiuto Syctou ’ o

i,_ S

[
e g%l

{S;JQ ‘wall.

i

. PSR .
e Tl - B : 7 ‘
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| |
The E-cumres are made to represent thg isovels of the |
primary flow and the? -ourves are orthogonal trajectories

of the family of ¥ -curves. In such a coordinate sys‘cem,

for a steady, uniform flow in the x-direction, the ;primary'

flow velooity is , , - Lo

Vx,= Vx.<‘5) : ; '

depending on ;only, the eguation of motion 1is ' ‘

—Lo 'avl ’ ' aﬁ ' 4 '

Pj'ﬂ; Vg ag == (PTeah)"' ;(1:—%- -é:ls‘é gx.v (3'3)
and the equation of continuity is :

V, (3-4)

a;(ﬂq 8)+a?(ﬁ; 1) =0 | | _ |

Where

Vﬁ = the f; ComPonenr of +he overage secondary Velocﬁy

ﬁ; 1 = scale factors on +he & and z COorvdmwl'es

TesSpectively

(ﬁ;’zf-&ﬁ + Where 3¢ 's the metric tensor of -the
Coovdinate Transf:orma'rson )

P =density of the fluid - ' |

Eguaﬁon (3-3)3ives

v =[- R Sx(Pregh) + 2Tex ?-gf‘-'t;x.]/

a; (3-5)

whnle. e%uaﬂon (3-4) gives

ad-4nn¢\ {na_rc\ an
vavie \ =gy
for secondary velooities can be accomplished once the prl-

mary velooity distridbution and 2 (P*fah)are determined | ‘
i

T {
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empirically, since the shear distribution can be obtained
from one primary velocity Aistribution., It was shown13
that the vertical veiocity profile of the primary flow
can be adequétely represented by a simplq povwer law,
Vx, = Cﬁ,%'
Iiggett, Ohiu and Miao also used the following

equation to repreaent a familv of isovels of the Primary -
flow ’

X2 X3 -
; = I\,dl.kv\ ' (3-8)

(A 7 A, )/7(

which gives 1its orthogors) trajectories as
ol+2 o2

X X '
7 =S ¢3-9)
wherec(is & constant to he determined empirically. 4

greater value ofol represents a greater curvature of the
family of isovels. .The scale factors can be derived from

equationl (3=8) and(3=9) ss:
B = —KaXasg 7

T NvEE= o (3-1ed
3
Ay = ' A1
| 7 ’J ch"'H) x"CeH-l) o <3 1)

‘Substituting equations (3-10) and (3-11) into equationl
(3-5) and (3-6), then

2T (k4 1) ( Xz X
\/'f = ._a._gll. - z.(aw)l) (;;(:3) +x3u-m75 CSX.

4 a(d'H) zubn) QX (P*ea“ )} (c

‘<342)
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V’l = %x;x,,%x%“*l , -%5‘ [ f/ x:uﬁ-u—?x:«wﬁ Jz CB-'.‘)
where the turbulent BhearZgyran be obtained from von Karman's
formula ' :

rﬁ& - (‘K‘ ¢ an, %%;?‘)z (3-14)

where K 18 von Karman's constant (0.4 for olesr water and
less for sediment laden water), | |
Equations (3=7) and (3-14) give

Cey = ot (& g%t ~(3"|5I)
Secondary flqw velocities csn be calculated by numeriocal

solution of équations (3=12) and (3=13).

C. Resultant S8tochastic Model

Superposition of‘ the deterministic and pure random
components of the motion of a single solid particles, as
descoribed previously, forms the following resultant sto-
chastic model, Ilet 'the vosition of a particle at the end
of the 1'h gtep be (O B, 2:) 0

then
T .
Niw =®X+ b, + % o \
fi sHr =g,, *(L’l TV ;'t +._<v,)5'z‘..t)§; l» (3716
- {e : .',(,1' +Y ’ L +.%?2i{h;}.;’;J




where

\a,\ = @verage velocity of primary flow at the point ~ - ..
P '

V}L '-vflitv*'tmﬁ and 7 components of sverage secondu;.y
~ velocity at the point (‘X.).-,f@)rospeo-
¢ tlvely, which can be either positive or
" negative. '

(vf)‘] ,(VP).J ‘==  the components of the settling velo~
oity of the particle 1nfand7

direction respectively,

1] = thex,,2 and 7 -componenta of the pure

random rotion of the particle during
the 1" stap,

.for a uniform flow in the x-direction,

Vol =Wl r 2]

P
[
L

o
o
".
X3

-

L

==\' LY L BVel iimy
Va. ¢ §J* 1%3?{ L= ¢ - *”»2”/ o=t ,ll,;.. ,(3 "”".
V,
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“( vf)x

¢ aXy | '
Ll < 2|l 2L o) 7e
A‘ i\"l\l}b |~ 013‘“ 'Q) "‘lA‘, .

whexe Ly, L, and I,y are given by equation (3-2)

TR is a constant time interval between two consecutive

steps. It can be determined ﬁiﬁt:!hnﬁegmgun.
urbwience—aoaTs as the upper measure of cor:elation.m ‘

i
TR will be used as a time unit. : L

o

We can see from equation (3-16) that the distance travelled :

by a particle in each step can be expressed ass i ’
A e+ =) = (X)) = L..L\'«r V"‘l:'t .
AR dv =Fm=F = L.g\i + v;‘..f+(v,)§). T

Ad) u-l =%’£‘+i —7(1‘: ,q) «\ | ‘ta./\l.‘ b 'f’

The positions of a particle 1nx, ;eﬁ?ordinate can aleo
be expressed in cartesian coordinates by a coordinate,
transformation. |

’
it e
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‘D. Group Motion of Solid Particles -

‘In the Present study the motion of a group.or cloud
of solid particles emitted from a point source is studied '
as well as that of a single particle. The group motiqn j
of partiolas is oomplex. However. 1n ordexr to simplif& ?.
the problem, the chemical reaction and interaction among
particles in the fluid are not considered in this study

Each partiole is oonsidered to behave 1ndependent1y.

-2- |
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_(3-16) and (3-17) eamﬂootxsider_g& equal- to those'at 'péint O.

IV DIGITAL COMPUTER SIMULATION

The simulation of the developed stochas’cic model

_was performed on the IBM 7090/1%1 digital oomputer of |
Computing Center, University of Pitts‘burgh. ‘I‘he programs

were written in MAD (Michigan Algorithm Decorder) language.
Lo
A. Computer Program '

+

The computer program of the developed model :..s

divided into two parts because of the limited comput_ér stéragé. _

" The first program is for computing pri_mary and secondary

velocities and their derivatives with respect to ¥ an:d 7
! !
at each -7 grid point. In other words, the outp\it or the
first program oonsists of values of Vx, V; ,( 9"% %Vf
5 5
at each® 7 grid point. The output of the first program :

‘As then stored in magnetic tapes and serve as the. 1nput for

the second program. The second program is wri.tten for
computing the positions of a partiole after eaoh time

period:. The ‘flow charts of these programs are presepted‘

"in Appendix I. 3

When the paruole fells in. he .shaded area shown

in Pig. 4-1 at the enq of the 1th
oV V| %
agt’agsta)(

aVy

N a;

'
t

‘.
S

1

?




?- curves AT
Fig. 4-1 Schematio Diagram of £-7 Grid Points @

Then the position of the particle at the end of the, (4+)

)R

step can he determined from equation (3-16). R

-~ . . i

B.' Generation of Random Numbers ,
, . i

Random numbers are a sequence of'numbers'wﬁiéhfare;
characterized by the property thét, knowing somé of. th§
numbers of the sequence, no other number in the sequence
can be predicated. Such numbers can be easily generated !
by a digital computer. There are several random number :
generators avallable in "Michigan Execute System“lz. Eaché
random number generator is characterized by a particular °
probability distribution law. For example, there are uni-
formly dlstr;buted random numbers generator and nofmal ' '
distributed random numbers generator which are often used.
The uniforml} distributed random numbers generatqr was used
in this study. It 18 a particular subroutine available.
in "Michigan Execute System". This subrbutine provides
the means of generating random numbers, uniformly distributed

over the interval o $X£|.

SR T AR e e g o o o
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Os Flow Fleld

The same three dimansional spiral flow field in _

8 corner of a stralght rectangular cha'nnol as in McSparran's"
experiment was considered in this study. In such a flow |
| condition the the parameterau, ¢, n and k in equationl (3-7),
- (3-8) and (3-15) vere determined to be 2.5, 4.43, 5.59
‘and 0.277 respectively. These values were used in this
efudy for calculating secondary velocities. The maximum
-primar’y»tlow vas 4.35. It was also found that Von Karman's
formula for turbulent shear was valid only for % v#luu -
greater than 0.16 when & ¥ 2.5 and that equation (3-8)
describes the primary isovels very well only in the region
bounded byE=0., % 20,36 and ? *$.020. Therefore, this

study was ‘limitted in the rezion boundod by}!l 0.16,

g = 0. 36. and 7-:0.020.

. . 25. .




D. Result of Computer Simulation

'1.4 The path of a single garticle}

In order to understand in detail the transport
Process of suspended solid particles in a three dimensional
Spiral rlow, it is desirable to investigate the path of
a single solid partlcle, 4 calculated sample particlhe
path is shown in Fig. 4-2, which deeoribes a helical c

4-32 ad’wﬁ show heproj‘ nf

4 ~a h_h
apwe = J’ -y

et* ¢n, P

the particle path on the X=X, XgX,and XXy planes respectively.
The equations for the particle paths in the X=X, » X;Xzand .

XX, planes were determined by thev method of least ;squaree.f

~28~
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2, Isopleth zgttorns

A typical set of results of computer simulation is
presented in Pigs. 4-6 througb 4-13., This set of results
is the Monte Oaflo estimates of the solutions of the diffue-
sion equation of solid particles (1, e, eq 2=14), Shown
in the figures, for a selected time and a distance interval
A%, , are the numbers of particles Ni (in thousandths of the
source emission N) inside each 20 x 20 x 20 grid. In other
words, Ni/N is the probability that a particle inside each
grid at the instant t, Points of equal Ni/N were connected,
for selected values of NKi/N, by isopleths, The local bon-
centration § can be obtained by dividing Ni by the volume .Vi
(2 20 x 20 x 20) of each grid.

Figs.4-6 through 4-13 show isopleth patterns, which
represent a solution to a diffusion problem. It can be
seen that after t = 150 the lsopleths are separated :nto
two differont.systems, in 2 menner quite similar %o that
.of Secondary flow "celle". As time 1ncreaael! the par-
ticle distribution tends to become uniform. In other words. »
the diffusion pattern tends to lose the memory of the source, -
This “niform state is the necessary condition for the appli-
cation of squation (2-21).

In addition to an examination of iaoploth pattornl. -
several statistiocal parameters desoridbing the diffusion

prooon- vere anal;:cd. ‘Phe mass oontqr of }ho olqud is |

R T
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- described in Pig., 4-14, by x“ l,xé, at a time t. Three
measures of the spread of the cloud are shown in Pig. 4-15,
A measure of thp.longitudlnal spread of the cloud is given

. by the standard deviation O(x) of the diffusing particles |
about thﬁ mass center. The measures of the transversal and
vertlocal spreads of the cloud about the mass center are re- ;
Presented by §(x) and q (x), respeotively. The best ritted:-
line is determined by the least square method for each case.f~

xn Fige 4=16 Xmax and Xmin ilndicats ths posits

-ac

.,.b
©

£ ths

moat and least advanced particles of the cloud, contrie

buting significant information concerning the dlffusion

process, o

The computing time required to get the result for a plot

. of 1sopleth pattern for t=100 and N= 1000 is about 160

minutes on IBM 7090 digital computer. The computrngtime

increases as % or N inoreases. For eéxample, for t 300 and

- N=5000 (as in Pig, 4-13). the computing time 1s apout o

1

1500 minutes, o : ;




V OONOLUSION

1. The stochastic model has gziven a solution to the
problem of initial phase of the transport of solid par-

tlcles in a corner of a straight rectangular channel.

This has led to a belief that the mechanios of the tramse

port of so0lid particles in a corner of & straight channel,

as developed in this study by a stochastic process study,

is promising. A summary of the theory established folloﬁ-s

 (a) The established stochastic model consists of

pure random and deterministic processes. The pure

e

random process represents the random walk of the pare
ticles at the presence of the fluid turbulence.

‘The deterministic process is represented the transe
port of solid particles due to the gravity force

and primary and secondary flows.

(v) A three dimensional diffusion equation of solid
particles (1, e, eq (2-14) ) has been developed by
random walk method, It 18 a quite genoral diffusion

equation. The one dimensional diffusion equation

(eq 2=34) which can be found easily in the literature

and the sediment diffusion ‘equation (eq 2-37) are

:ult two particnlar cases of it, | B *




(c) The Monte Oarlo method can be employed to solve the
diffusion equation (eﬁ 2-14), It appears that this
is the only feasible method at present (1966) to

solve (ed 2-14) without any experiential values,

(4) The motion of a single diffusing particle exhibits
a epiral form., This indicates that the transport of a
'single particle is in-fluenced by secondary flow which

makes its motion spiresl.

(e) The diffusion of a cloud of solid particles emitted
from a point source results in a particle distridbution
represented by isopleth patisrn which is quite similar

to secondary flow "cells".

2. It is believed that the diffusion coefficlient as defined

"in equation (2-15) and the time required to reach uniform

state, which are two important parameters of the diffusion
process, can be determined by a further qtudy, These in~

vestigations will be carried out in ; Qdi§oquont research.
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